>
Trump's FCC Seeks to Strip Even More Local Control Over 5G Rollout
How - and What - Investors Steal from the Public
President Trump's 'Mission Accomplished' Moment
Silver and the 401(k) Precious-Metals Rule Change for 2026
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

There comes a moment in every physicist's life when they think the unthinkable: I wish I were an engineer. I suspect this thought crossed the minds of the 14-odd physicists involved in creating a key demonstration of the scalability of quantum computing using light.
At the moment, if you had to bet on the technology most likely to win the quantum computing race, most people would put their chips on a spread of superconducting rings. But I'd put the house and kids on light. Why? Because lasers make everything better. More seriously, quantum computing architectures based on superconducting devices have made remarkable progress in the last five to ten years. By contrast, progress on the light front has been ominously slow. But it should be easier to work with light-based qubits if we can ever get them off the ground.