>
Why You Never Hear Back from Aggressive Indian Recruiters: The H-1B Visa Scam Explained
Scott Horton: The Case Against War and the Military Industrial Complex | Lex Fridman Podcast #478
Shadowy Forces Behind JD Vance's Rise and Grooming as MAGA Successor
Who Is Paying Alberta, Canada, Premier Danielle Smith if Not Big Pharma?
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
How much data are we talking here? "This new molecule could lead to new technologies that could store about three terabytes of data per square centimeter," said Professor Nicholas Chilton from the Australian National University (ANU). "That's equivalent to around 40,000 CD copies of The Dark Side of the Moon album squeezed into a hard drive the size of a postage stamp, or around half a million TikTok videos."
To achieve this sort of data density, the team of chemists from ANU and the University of Manchester had to go beyond existing magnetic storage tech. Current drives magnetize small regions of a material to retain memory and that's fine – but the researchers are looking at single-molecule magnets (SMM) which can store data individually to unlock much greater density than ever before.
Imagine a tiny magnet that stores a 1 or 0, similar to computer memory. For these molecular magnets to be useful, they need to reliably hold their magnetic direction (their "memory") across a range of temperatures. Today's single-molecule magnets, especially those made with the metallic element Dysprosium, lose their magnetic memory below about 80 Kelvin (which is -193 °C or -315 °F).
The researchers took it upon themselves to get these magnets to work at higher temperatures than that. They've achieved this by designing and synthesizing a new Dysprosium molecule called 1-Dy. This new molecule maintains its magnetic memory (termed hysteresis) up to 100 Kelvin (-173 °C or -279 °F), which "could be feasible in huge data centers, such as those used by Google," according to co-lead author Professor David Mills.
The new molecule is said to be more stable too, meaning it can withstand a much higher energy barrier to magnetic reversal than previous SMM, and that it would take more energy to flip its magnetic state by accident. The team published its findings in Nature earlier this week.
1-Dy maintains its magnetic memory at higher temperatures than previous magnets because of its unique molecular structure. Since the rare earth element is located between two nitrogen atoms in a straight line, held in place with an alkene bonded to Dysprosium, the molecule's magnetic performance is significantly better than other SMM.