>
Shadowy Forces Behind JD Vance's Rise and Grooming as MAGA Successor
Who Is Paying Alberta, Canada, Premier Danielle Smith if Not Big Pharma?
RFK Jr. kills off $122M in grants to LGBT and diversity causes in sweeping action
Trump Unveils Another $825M Arms Sale To Ukraine, While Talking Peace
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Why? Stretching nanoscale samples changes their electronic and optical properties, which could open up a new world of diamond devices.
To say that diamond isn't very elastic is an understatement – while the stretchiest materials can reach tensile elastic strains of a few hundred percent, bulk diamond tops out at less than 0.4 percent.
On the nanoscale however, diamond theoretically should be capable of much higher elasticity. A few years ago, the City University team bent nanoscale needles of diamond to tensile elastic strains of about 9 percent.
In the new study, the team took things a step further. They made bridge-shaped samples of diamond about 1,000 nanometers long and 300 nm wide, and stretched them lengthways. Over a series of cycles, the diamond showed an elastic deformation of around 7.5 percent across the whole piece, before returning to its original shape once the pressure was off.
In follow-up tests, the researchers optimized the shape of the samples, and then managed to stretch the diamond even further – up to 9.7 percent. That, they say, is close to the theoretical elastic limit of diamond.
But the experiment wasn't just about stretching diamond for the sake of it – it could pave the way for new electronic components made of diamond. Applying that kind of strain can actually change some of the electronic and photonic properties of a material.
To find out how much by, the team simulated diamond's electronic properties under different levels of strain, between zero and 12 percent. They found that as the tensile strain increased, the diamond's bandgap decreased, essentially meaning it became more electrically conductive. It peaked at a 2 electronVolt drop when under about 9 percent strain. Using spectroscopy, the scientists verified this bandgap-decreasing trend in the diamond samples.