>
What Are Our Politicians Doing To Us?
This Is NOT The Last Rodeo For Neal McDonough | #437 | The Way I Heard It
James Comer Wants Depositions From People Who Had 'Influence' Over Biden and Were 'Possi
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
Though there are huge lithium-ion battery installations from the likes of Tesla that can store energy harvested from renewables like wind and solar, they're not exactly cheap. The USC researchers looked to an existing design that stores energy in liquid form.
In the so-called redox flow battery, a positive chemical and a negative chemical are stored in separate tanks. The chemicals are pumped in and out of a chamber where they exchange ions across a membrane – flowing one way to charge and the other to discharge.
Though such systems have previously used expensive, dangerous and toxic vanadium and bromine dissolved in acid for their electrolytes in the past, we have seen recent designs that replace those with organic or more environment-friendly alternatives.
For its design, the USC team used a waste product of the mining industry and an organic material that can be made from carbon-based feedstocks, including carbon dioxide, and is already used in other redox flow batteries.