>
Back to cash: life without money in your pocket is not the utopia Sweden hoped
How people spent their time from 1930 - 2024
Superwood is Here! This Amazing New Material Could Change The World!
If only we'd built those offshore wind turbines, eaten more cricket-burgers...
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
It was part of the 2019 Interstellar Symposium. The workshop focused on physics-based propulsion technologies that have the potential to meet the goal of launching an interstellar probe within the next century and achieving .1c transit velocity: Beamed Energy Propulsion, Fusion, and Antimatter.
The state-of-the-art of each was examined, and competing approaches to advancing the Technology Readiness Level (TRL) were presented and assessed for synthesis into a report that will serve as the blueprint for possible future interstellar propulsion technology development.
Geoffrey Landis looked at providing power for communication for an interstellar probe that weighs a couple of grams. He looks at using a system to generate power from a system that has been accelerated to 10-20% of the speed of light. The probe would interact with the interstellar plasma and with magnetic fields of the target solar system.