>
CME Alert: Major Margin Hikes Across All Precious Metals
Mamdani says NYC is facing an unexpected $10 billion projected budget deficit...
JOBY WEEKS: A CASE OF INJUSTICE, "HE NEEDS TO BE FREE"
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

A 100-watt laser power could create a megawatt nuclear fusion generator. This would provide a total energy gain of more than ten thousand.
It would have deuterium-tritium as fuel. It would use a novel muon generator to produce 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch.
The reactor would generate neutrons so thick shielding would be needed.
Prior Lab Proof of High Energy Nuclear Fusion Reactions
The Prof Lief Holmlid research group has published studies that prove the formation of mesons and muons with up to 100 MeV u−1 energy by laser-initiated processes in ultra-dense deuterium D(0) and ultra-dense protium.
The extreme density of ultra-dense deuterium D(0) makes it an excellent fuel for nuclear fusion by inertial confinement fusion. The density is so high that only an exciting laser pulse is required and no further compression is needed to reach nuclear reaction conditions.