>
Trump Administration Furthering Control Grid
Living in a World of Ongoing Shortages
The Gaza Crisis and the Repeal of Christianity's Personhood Revolution
RED ALERT: Doctors Sound the Alarm After Fibrous Clots Discovered in Young Children Born...
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
QCI's unique software platform harnesses the power of our quantum hardware. We are building a full stack of flexible software to run novel and complex algorithms, exploiting the full potential of quantum computation.
Delivering Quantum as a Service.
QCI opened its New Haven development and testing facility for quantum computing.
The facility includes 6,000 square feet of state-of-the-art laboratories and in-house manufacturing. It will house more than 20 scientists and engineers.
Yale University researchers have demonstrated one of the key steps in building the architecture for modular quantum computers: the "teleportation" of a quantum gate between two qubits, on demand.
The key principle behind this new work is quantum teleportation, a unique feature of quantum mechanics that has previously been used to transmit unknown quantum states between two parties without physically sending the state itself. Using a theoretical protocol developed in the 1990s, Yale researchers experimentally demonstrated a quantum operation, or "gate," without relying on any direct interaction. Gates are necessary for quantum computation that relies on networks of separate quantum systems — an architecture that many researchers say can offset the errors that are inherent in quantum computing processors.