>
The Prostate Cancer Test Dilemma
The Separation of Righteousness and Politics
Russian strike knocks out power in Kyiv FRANCE 24 English
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

Inspired by the way young hearts heal themselves, researchers have now found a way to transmute scar tissue into healthy tissue in mice, thereby walking back some of the damage brought about by heart attacks.
In the United States alone, someone has a heart attack every 40 seconds, which means finding a way to prevent and minimize the damage from these cardiac events is a major priority for scientists. While plenty of research goes into preventing heart attacks, we're now seeing investigations into how to repair the heart after it suffers damage, particularly the scar tissue that forms after a heart attack. That's because left-behind scar tissue is more rigid than healthy heart tissue. Because it flexes less, it can restrict the heart's proper functioning and lead to future complications.
Earlier this year, researchers in Australia found a way to combat heart scarring in rats by boosting elastin, a substance that gives some body tissues their stretchy qualities. In that study, the heart scars shrank and became more flexible, restoring the heart to near its normal function.
The new study was carried out by researchers at Duke University (DU), who looked to the function of fibroblasts, cells involved in forming both connective and scar tissue. Their plan was to use a process involving RNA called cellular reprogramming, that would convert fibroblasts back into healthy heart tissue following a heart attack. The technique has previously been studied not only with regard to heart repair efforts, but for restoring motor function in stroke victims, wound repair and more.