>
US Gasoline Prices Heading Into Memorial Day Weekend Are The Lowest Since COVID
RFK Jr. Drops Bombshell 'MAHA' Report Outlining 'Existential Public Health Crisis'..
British Airways Extends Suspension Of Israel Flights As More Houthi Missiles Target Airport
I'm a pilot -- here's the disastrous truth about flying out of Newark Airport
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
Between each of our vertebra is a shock-absorbing spinal disc, which consists of a rubbery exterior known as the annulus and a jellylike "filling" called the nucleus. Herniated discs occur when a tear in the annulus allows some of the nucleus to leak out and bulge into adjacent nerves, irritating them.
Surgical treatments typically involve either removing the protruding nucleus and then sewing up the tear in the annulus – leaving the disc "deflated" – or refilling the disc with a replacement material, which may eventually also leak out through the unpatched hole.
Led by Cornell University's Prof. Lawrence Bonassar, scientists from the US and Italy have developed a procedure that combines the refilling with the patching. It's performed after a discectomy, which is the standard process for removing the leaked nucleus material.