>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Ordinarily, the adenosine that is naturally sent to bone injuries gets quickly metabolized by the body. This ceases the healing "boost" that the chemical initially provides. Led by Prof. Shyni Varghese, scientists at North Carolina's Duke University set about developing a method of trapping and harboring adenosine at the injury site, allowing it to perform its healing duty over a longer period of time.
The result is a prototype bandage that could be surgically applied directly to broken bones. It incorporates boronate molecules, which form bonds with adenosine molecules that are present at the injury site. As those bonds gradually weaken, the adenosine is slowly released – but only where it's needed.
"Adenosine is ubiquitous throughout the body in low levels and performs many important functions that have nothing to do with bone healing," says Varghese. "To avoid unwanted side effects, we had to find a way to keep the adenosine localized to the damaged tissue and at appropriate levels."
The healing progress of a fracture in a mouse treated with bandages that trap native adenosine (top), are preloaded with external adenosine (middle), and have no adenosine at all
Duke University
In lab tests, broken bones in mice were treated with three types of bandages. These consisted of bandages that were designed to retain adenosine produced by the animals, bandages that were already "primed" with adenosine, and bandages that neither contained nor could trap the chemical.