>
Selling Us Rope: Palantir Is Raking In Billions From Washington
Tyson Foods Confirms Protein Switching Underway Amid Record High Beef Prices
Holy SH*T! Sex Offender Can't Adopt Kids--So He Bought One Instead? | Redacted w Clayton Morris
'Robot skin' beats human reflexes, transforms grip with fabric-powered touch
World's first nuclear fusion plant being built in US to power Microsoft data centers
The mitochondria are more than just the "powerhouse of the cell" – they initiate immune...
Historic Aviation Engine Advance to Unlock Hypersonic Mach 10 Planes
OpenAI CEO Sam Altman Pitches Eyeball-Scanning World ID to Bankers
New 3D-printed titanium alloy is stronger and cheaper than ever before
What is Unitree's new $6,000 humanoid robot good for?
"No CGI, No AI, Pure Engineering": Watch Raw Footage Of 'Star Wars'-Style Speeder
NASA's X-59 'quiet' supersonic jet rolls out for its 1st test drive (video)
Hypersonic SABRE engine reignited in Invictus Mach 5 spaceplane
Debilitating tendon injuries may soon be a thing of the past now that researchers have discovered the existence of "tendon stem cells" for the first time.
The buildup of scar tissue makes recovery from torn rotator cuffs, jumper's knee, and other tendon injuries a painful, challenging process, often leading to secondary tendon ruptures.
New research led by Carnegie's Chen-Ming Fan and published in Nature Cell Biology reveals the existence of tendon stem cells that could potentially be harnessed to improve tendon healing and even to avoid surgery.
"Tendons are connective tissue that tether our muscles to our bones," Fan explained. "They improve our stability and facilitate the transfer of force that allows us to move. But they are also particularly susceptible to injury and damage."
Unfortunately, once tendons are injured, they rarely fully recover, which can result in limited mobility and require long-term pain management or even surgery. The culprit is fibrous scars, which disrupt the tissue structure of the tendon.
Working with Carnegie's Tyler Harvey and Sara Flamenco, Fan revealed all of the cell types present in the Patellar tendon, found below the kneecap, including previously undefined tendon stem cells.