>
Selling Us Rope: Palantir Is Raking In Billions From Washington
Tyson Foods Confirms Protein Switching Underway Amid Record High Beef Prices
Holy SH*T! Sex Offender Can't Adopt Kids--So He Bought One Instead? | Redacted w Clayton Morris
'Robot skin' beats human reflexes, transforms grip with fabric-powered touch
World's first nuclear fusion plant being built in US to power Microsoft data centers
The mitochondria are more than just the "powerhouse of the cell" – they initiate immune...
Historic Aviation Engine Advance to Unlock Hypersonic Mach 10 Planes
OpenAI CEO Sam Altman Pitches Eyeball-Scanning World ID to Bankers
New 3D-printed titanium alloy is stronger and cheaper than ever before
What is Unitree's new $6,000 humanoid robot good for?
"No CGI, No AI, Pure Engineering": Watch Raw Footage Of 'Star Wars'-Style Speeder
NASA's X-59 'quiet' supersonic jet rolls out for its 1st test drive (video)
Hypersonic SABRE engine reignited in Invictus Mach 5 spaceplane
The ability to modify and track exosomes in vivo is essential to understanding exosome pathogenesis, and for utilizing exosomes as effective diagnostic and therapeutic nanocarriers to treat diseases.
Researchers from the Washington University School of Medicine recently reported a new electroporation method that allow exosomes to be loaded with superparamagnetic iron oxide nanoparticles for magnetic resonance tracking. Building on this approach, they now demonstrate for the first time using a C57BL/6 mouse model that melanoma exosomes can be imaged in vitro, and within lymph nodes in vivo with the use of standard MRI approaches.