>
The Middle Class Is Collapsing: Nearly 1 Out Of Every 4 Americans Is Now "Functionally Unemploy
My Hot Take On Trump Diverting $3 Billion From Harvard To Trade Schools
When Things Go to Heck, Have a Hand Truck
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
Now you can grab that public bathroom door handle without fear—a solution to the conundrum of how to gracefully exit after washing your hands is finally here.
The two student inventors are among 20 finalists selected for the international James Dyson Award for their "illuminating" solution to bacteria-ridden doorhandles.
Despite the use of sanitizers and routine cleaning of public areas, the bathroom door handle presents a unique challenge. University of Hong Kong graduates Sum Ming Wong and Kin Pong Li set out to design a solution that was self-powered and avoided the chemical cleansers that are sometimes harmful to human health.
"Nowadays, people use chemical cleaning materials to clean up public areas, but it is both easy to wipe off and harmful to the human body," said the inventors. "Our design has high durability and [is] effective."
By using materials that cost only $13 per door handle, they combined titanium dioxide powder and ultraviolet LED lights to effectively develop a door handle that cleans itself.
Not only that, they also engineered a small gear box and generator to be hooked up to the door itself, making it self-powered. The kinetic energy generated from opening and closing the door provides enough electricity to keep the handle lit and functional.
The handle kills bacteria by the action of a thin titanium dioxide film on the outside of the clear handle. The chemical is known to be a photo-catalyst, so when the UV lights activate the coating, it reacts to water or oxygen to create hydroxyl radicals that decompose the bacteria. It killed 99.8% of bacteria in lab tests.