>
What They Don't Tell You About Autoimmune Disorders
Jim Lovell, commander of NASA's Apollo 13 moon mission, dies at 97
Powerful new oral painkiller blocks signals without sedation or addiction
Tesla Gets a Texas Rideshare Network License
3D printing set to slash nuclear plant build times & costs
You can design the wheels for NASA's next moon vehicle with the 'Rock and Roll Challenge
'Robot skin' beats human reflexes, transforms grip with fabric-powered touch
World's first nuclear fusion plant being built in US to power Microsoft data centers
The mitochondria are more than just the "powerhouse of the cell" – they initiate immune...
Historic Aviation Engine Advance to Unlock Hypersonic Mach 10 Planes
OpenAI CEO Sam Altman Pitches Eyeball-Scanning World ID to Bankers
New 3D-printed titanium alloy is stronger and cheaper than ever before
What is Unitree's new $6,000 humanoid robot good for?
"No CGI, No AI, Pure Engineering": Watch Raw Footage Of 'Star Wars'-Style Speeder
Scientists have determined a new way to protect the hair follicle from chemotherapy in an effort to prevent hair loss as a result of cancer treatments.
Researchers based at The University of Manchester have discovered a new strategy for how to protect hair follicles from chemotherapy, which could lead to new treatments that prevent chemotherapy-induced hair loss—arguably one of the most psychologically distressing side effects of modern cancer therapy.
Published in the journal, EMBO Molecular Medicine, the study from the laboratory of Professor Ralf Paus of the Centre for Dermatology Research describes how damage in the hair follicle caused by taxanes, cancer drugs which can cause permanent hair loss, can be prevented.
To do this, scientists have exploited the properties of a newer class of drugs called CDK4/6 inhibitors, which blocks cell division and are already medically approved as so-called "targeted" cancer therapies.
Dr Talveen Purba, lead author on the study explains: "Although at first this seems counter-intuitive, we found that CDK4/6 inhibitors can be used temporarily to halt cell division without promoting additional toxic effects in the hair follicle. When we bathed organ-cultured human scalp hair follicles in CDK4/6 inhibitors, the hair follicles were much less susceptible to the damaging effects of taxanes."