>
Episode 483 - Dissent Into Madness
Israel Placed Surveillance Devices Inside Secret Service Emergency Vehicles...
Here is the alleged partial chat log between Tyler Robinson and his trans lover...
MAJOR BREAKING: State Department & UN ties to Armed Queers SLC leader now confirmed
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laura Norman stood by the trickling stream and let the enchantment of her surroundings wash over her. The landscape was verdant, lush even, but Norman wasn't standing in a tropical paradise. In fact, her oasis was in one of the driest, hottest regions in the world, and only a handful of years ago, this gully was virtually barren of plants.
In the arid and semi-arid southwestern United States, where Norman has studied watersheds for over 20 years, land use changes and climate change are causing increasing desertification. And yet where she stood, as if by magic, permanent wetlands had sprung up.
But it wasn't a spell or a massive feat of engineering that caused moisture to seep into the land, allowing plants to grow and creating habitat for aquatic animals. It was simple technology that when carefully applied, allowed the laws of nature to transform the land.
The simple technology Norman and her team used was a type of nature-based solution they call Natural Infrastructure in Dryland Streams, or NIDS. Essentially, NIDS are structures made of rock, wood or mud that people or reintroduced beavers construct across the flow of water in a gully, creek or stream.
The NIDS structures she studies seem like dams, but they don't retain water, they merely slow it down. They are basically detention structures, not impoundments.
Norman studies these detention structures as part of her long-termĀ Aridlands Water Harvesting Study. While simple, they have many benefits.
Slowing the flow decreases erosion and allows the water time to seep into the ground where it can recharge underground reservoirs, or aquifers. Although they slow the flow, counterintuitively they increase downstream water levels.
These detention structures also trap sediment, improving downstream water quality and creating substrate in which plants can take root. Once in place, the wetland ecosystems that form around NIDS further decrease erosion and support wildlife.