>
Gut cells drive self-renewal by communicating like brain cells
Michael Oliver Just Predicted The Price Of Silver Will Hit $160-$240
Japan Bets On Super Thin, Film-Like Panels to Reclaim Solar Leadership At Expo 2025
NASA's X-59 'quiet' supersonic jet rolls out for its 1st test drive (video)
Hypersonic SABRE engine reignited in Invictus Mach 5 spaceplane
"World's most power dense" electric motor obliterates the field
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
This new zero thermal expansion (ZTE) material made of scandium, aluminum, tungsten and oxygen did not change in volume at temperatures ranging from 4 to 1400 Kelvin (-269 to 1126 °C, -452 to 2059 °F).
That's a wider range of temperatures, say scientists from the University of New South Wales (UNSW), than any other material demonstrated to date, and it could make orthorhombic Sc1.5Al0.5W3O12 (catchy name, eh?) a very handy tool for anyone engineering something that needs to work in extremely varied thermal environments.
Examples of where this might come in handy include things like aerospace design, where components are exposed to extreme cold in space and extreme heat at launch or on re-entry. Famously, the SR-71 Blackbird was designed to expand so much at its Mach 3.4 top speed that it would liberally drizzle fuel on the runway at ground temperatures; the fuel tanks wouldn't even fully seal until they heated up. This new material stays exactly the same volume from close to absolute zero all the way up to comfortably over the heat you'd expect to get on the wing of a hypersonic aircraft traveling at Mach 5.
Or there's things like medical implants, where the range of expected temperatures isn't so varied but even a small amount of thermal expansion can cause critical issues.
The UNSW team made the discovery more or less by accident: "We were conducting experiments with these materials in association with our batteries-based research, for unrelated purposes, and fortuitously came across this singular property of this particular composition," says Associate Professor Neeraj Sharma.