>
EXPOSED: Big Pharma's Sinister Takeover of the Cannabis Industry w/ Inesa Ponomariovaite
Another Massive Biden Scandal Exposed - Biden Had Cancer While President...
BREAKING FINANCIAL TERRORISM ALERT: Learn How The Private Federal Reserve / Moody's...
BREAKING: Alex Jones Responds To Kash Patel & Dan Bongino Claiming That They've Seen The Proof -
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
This will allow more data to be stored and for that data to be read at a quicker rate. Rather than using the traditional dots and dashes as commonly used in these technologies, the Purdue innovators encode information in the angular position of tiny antennas, allowing them to store more data per unit area.
This technology can also be used for security tagging and cryptography.
Above – The proposed anisotropic metasurface from Purdue University innovators has significant potential for high-density optical data storage, dynamic color image display, and encryption.
"The storage capacity greatly increases because it is only defined by the resolution of the sensor by which you can determine the angular positions of antennas," said Alexander Kildishev, an associate professor of electrical and computer engineering in Purdue's College of Engineering. "We map the antenna angles into colors, and the colors are decoded."