>
FBI director Kash Patel hints at 'wave of transparency' to come as agency aims to...
The Remarkable Secrets of Coconuts
New Blogs about Ian Freeman's Appeal
"Where Is Everyone?" - China's Cities Are Empty, Funerals Outnumber Weddings 17 to 1
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Over the past 64 years, there's been remarkable success with robotic satellites and probes, but these have been relatively small, with the heaviest being the ATV cargo ship weighing in at 44,738 lb (20,293 kg) fully loaded – and that one only went into low-Earth orbit. The largest deep space probe was the Cassini-Huygens mission to Saturn, which came in at a titchy 12,467 lb (5,655 kg).
This is because the greatest obstacle to humanity becoming a true spacefaring species is the engines used to propel spacecraft across the solar system and beyond. Chemical rockets can push out an impressive amount of thrust, but have very little specific impulse. That is, they can't fire for very long before they run out of propellant. Electric propulsion systems, like Hall thrusters, are the opposite. They only put out about as much thrust as the weight of a small coin, but they can burn for months as opposed to minutes, so they can (slowly) build up to great speeds.