>
September: Fed's Rate Cut Could Send Silver Through the Roof - Dr. Kirk Elliott
How to Turn Off the "Kill Switch" . . .
Laser connects plane and satellite in breakthrough air-to-space link
When You're Friend Gets Back From Burning Man
Neuroscientists just found a hidden protein switch in your brain that reverses aging and memory loss
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
The more advanced 2nm process is also reported to have made significant progress. The 2nm process will start mass production around 2023 to 2024.
TSMC thinks risk trial production yield in the second half of 2023 can reach 90%. The 3nm and 5nm processes use FinFET. TSMC 2nm process uses a new multi-bridge channel field effect transistor (MBCFET) architecture.
TSMC plans to switch to GAAFET (gate all around) for 2nm chips. FINFET doesn't surround a channel on all sides. GAA surrounds a channel using a Gate. The latter method makes current leakage almost negligible.
The N5 node that TSMC is working with can use 5nm for up to 14 layers. The 3nm process node could deliver up to a 15% hike in power at the same transistor count as 5nm, and up to a 30% reduction in power use (at the same clock speeds and complexity).
Dutch lithography company ASML says that at 3nm, lithography can be used on more than 20 layers.
Intel is lagging TSMC in reducing transistor size. Intel has published a roadmap that reaches 1.4 nanometers in 2029.