>
Tulsi Gabbard calls for PROSECUTION of Obama, Clapper, Brennan, Comey...
Decentralize TV - Catherine Austin Fitts on the government's FINANCIAL ENSLAVEMENT plot...
Do You Know How to Pick a Lock?
Democrats Demand Investigation Into Colbert's Cancelation
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
The N7+ process with EUV technology is built on TSMC's successful 7nm node and paves the way for 6nm and more advanced technologies.
The leading edge is currently at 7+ with about three layers done using EUV. In 2020, TSMC will ramp 5nm in the second half with significantly increased EUV usage of about 15 layers, followed by 6nm ramping at the end of 2020 with about four layers done in EUV, according to Jim Fontanelli, a senior analyst with Arete Research.
N7+ is also providing improved overall performance. When compared to the N7 process, N7+ provides 15% to 20% more density and improved power consumption, making it an increasingly popular choice for the industry's next-wave products. TSMC has been quickly deploying capacity to meet N7+ demand that is being driven by multiple customers.