>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Now researchers at MIT have identified a surprising new dynamic drug duo, combining two classes that are already beginning to be widely used. Interestingly, the combo appears to work in a completely different way to what scientists previously expected.
The researchers started with a class of drugs called PLK1 inhibitors, which have proven effective in the past and are beginning to be tested in phase 2 clinical trials. The team set out to boost the effects of this type of drug, to see if it could be made even more effective.
PLK1 inhibitors primarily work by messing with mitosis, the process cancer cells use to divide and spread quickly. But as a side effect, they can also cause oxidative damage to cells – and this is the area the team wanted to give a leg up to. The researchers reasoned that PLK1 inhibitors could be even more potent a cancer-killer if they paired them up with another drug that prevents cells from repairing oxidative damage.