>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Called TRAuma Care In a Rucksack (TRACIR), it will use advanced sensors, robotics, and artificial intelligence to autonomously treat battlefield casualties almost immediately.
In trauma surgery there is what is called the "golden hour." More a metaphor than a strict medical term, it encapsulates the idea that stabilization and treatment of a trauma patient in the brief window after receiving an injury can mean the difference between life and death. So important is this concept, that it has informed decades of military and civilian doctrines about treating casualties.
According to CMU, the purpose of TRACIR is to reduce the time a patient receives treatment down to almost the point they are placed on a stretcher. Drawing on the expertise of a multidisciplinary team of Pitt researchers and clinicians from emergency medicine, surgery, critical care and pulmonary fields combined with that of roboticists and computer scientists at CMU, the goal is to build a "hard and soft robotic suit" into which a patient can be inserted.
Inside this "suit" is an array of sensors through which a series of computer algorithms can assess the condition of the patient and robotically provide the appropriate treatments, including medicines and intravenous fluids. Through the use of machine learning, TRACIR can help to resuscitate, stabilize, and treat soldiers as they are evacuated from the battlefield to proper medical facilities, or even in the field if evacuation isn't possible or a medic isn't available.