>
"World's most power dense" electric motor obliterates the field
Robot metabolism: The next evolution of our overlords?
Trump's $1 trillion AI data center boom strains Texas grid -- nuclear power eyed as solution
OpenAI ChatGPT Agent for Tool Use, Shopping and Other Activity
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Whether they're in airplane wings, bridges or other critical structures, cracks can cause catastrophic failure before they're large enough to be noticed by the human eye. A strain-sensing "skin" applied to such objects could help, though, by lighting up when exposed to laser light.
Developed by a team led by Rice University's Bruce Weisman and Satish Nagarajaiah, the skin is actually a barely-visible very thin film. It consists of a bottom layer of carbon nanotubes dispersed within a polymer, and a top transparent protective layer composed of a different type of polymer (carbon nanotubes are basically microscopic rolled-up sheets of graphene, graphene being a one-atom-thick sheet of linked carbon atoms).
As is the case with carbon nanotubes in general, the ones in the skin fluoresce when subjected to laser light. Depending on how much mechanical strain they're under, however, they'll fluoresce at different wavelengths. Therefore, by analyzing the wavelength of the near-infrared light that the nanotubes are emitting, a handheld reader device can ascertain the amount of strain being exerted on any one area of the skin – and thus on the material underlying it.
The skin has been tested on aluminum bars, which were weakened in one spot with a hole or a notch. While those bars initially appeared uniform to the reader, the skin dramatically indicated where the weakened areas were once the bars were placed under tension.