>
"World's most power dense" electric motor obliterates the field
Robot metabolism: The next evolution of our overlords?
Trump's $1 trillion AI data center boom strains Texas grid -- nuclear power eyed as solution
OpenAI ChatGPT Agent for Tool Use, Shopping and Other Activity
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Bringing us ever closer, Google has now unveiled Bristlecone, a new quantum computer chip with the record-setting power of 72 quantum bits (qubits).
Traditional computers perform their calculations in binary, so every bit of data is represented as either a zero or a one. Thanks to the quirky science that is quantum mechanics, a qubit can be in a superposition of both, effectively representing both a zero and a one at the same time. That means the power of a quantum computing system scales exponentially – two qubits can represent four states at once (00, 01, 10 and 11), three qubits represent eight, and so on.
As a result, quantum computers are great at performing simultaneous operations, processing all of these states at the same time where classic computers would have to run through each in turn. That means that, theoretically, a quantum computer made with a 49-qubit chip (like Tangle Lake, a processor Intel unveiled at CES in January) could outperform our current best supercomputers at certain types of operations.