>
Catch Your Dream: Love it, Do it, Live it
BMW to begin series production of 3rd-gen hydrogen fuel cell system
The world you know will be nearly UNRECOGNIZABLE by 2030: AI, robots, revolts...
Neuroscientists just found a hidden protein switch in your brain that reverses aging and memory loss
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
We owe our vision to an array of photoreceptor cells on our retinas, which respond to light and send the signals to the brain to interpret what we're seeing. But being neurons these cells won't regenerate on their own, so if they're damaged, that's it. At least, that's how it works in mammals – scientists have found that other animals like the zebrafish can convert structural cells called Müller glia into new, functioning photoreceptors to restore their vision. The new study has now shown how this could be done in mammals.
"This is the first report of scientists reprogramming Müller glia to become functional rod photoreceptors in the mammalian retina," says Thomas N. Greenwell, NEI program director for retinal neuroscience. "Rods allow us to see in low light, but they may also help preserve cone photoreceptors, which are important for color vision and high visual acuity. Cones tend to die in later-stage eye diseases. If rods can be regenerated from inside the eye, this might be a strategy for treating diseases of the eye that affect photoreceptors."
–– ADVERTISEMENT ––
The team investigated whether this kind of repair mechanism could be carried over to mammals, ideally without having to injure the retinas of test mice. Eventually they developed a two-phase process that managed to do just that. In the first phase, the researchers injected the eyes of healthy mice with a gene that would turn on a protein called beta-catenin. This triggers the Müller glia to start dividing. After a few weeks, phase two involved injecting factors into the eyes that direct those newly-divided cells to develop into rods.
When the team examined the cells using microscopy, they found that structurally the rods grown out of Müller glia looked exactly the same as the natural ones. On top of that, they also developed the network of synapses that allowed them to communicate with other neurons.