>
Billionaire Businessman Reflects on 'Not Hard' Decision to Leave Crime-Ridden Chicago
China's Mineral Power Play Will Succeed--Until It Doesn't
Individualism and Self-Determination in the American Tradition
Gold's OMINOUS Warning: A Global Monetary Reset That'll BLINDSIDE Americans
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Now, a team of scientists from Australia and the US has developed a new water desalination technique that can not only make seawater fresh enough to drink, but recover lithium ions for use in batteries.
The key to the process is metal-organic frameworks (MOFs), which boast the largest internal surface area of any known material. Unfolded, a single gram of the material could theoretically cover a football field, and it's this intricate internal structure that makes MOFs perfect for capturing, storing and releasing molecules. Recent research into the material could see MOFs put to work as carbon emission sponges, high-precision chemical sensors, and urban water filters.
Currently, reverse osmosis membranes are the most commonly-used technology for water filtration, and they work on a fairly simple principle. The membrane's pores are large enough for water molecules to pass through, but too small for most contaminants.