>
The Blame Game Tariff Trump & Too Late Powell
Here's how to eat after taking antibiotics, according to science
Sour fruit heralded as treatment for gout, insomnia, sore muscles and more
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Now, a team of scientists from Australia and the US has developed a new water desalination technique that can not only make seawater fresh enough to drink, but recover lithium ions for use in batteries.
The key to the process is metal-organic frameworks (MOFs), which boast the largest internal surface area of any known material. Unfolded, a single gram of the material could theoretically cover a football field, and it's this intricate internal structure that makes MOFs perfect for capturing, storing and releasing molecules. Recent research into the material could see MOFs put to work as carbon emission sponges, high-precision chemical sensors, and urban water filters.
Currently, reverse osmosis membranes are the most commonly-used technology for water filtration, and they work on a fairly simple principle. The membrane's pores are large enough for water molecules to pass through, but too small for most contaminants.