>
Israeli Prime Minister, Netanyahu will meet with Trump on Wednesday and deliver instructions...
Elon Musk Offers To Cover Legal Bills Of Epstein Survivors Who Identify New Names
Red Alert Emergency Broadcast! Tune In NOW As Alex Jones Analyzes The Insane Revelations...
330 gallons of sulphuric acid was purchased for Epstein Island on the day the FBI opened...
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
The scientists responsible for the new molecule believe their breakthrough could be used to turn stem cells into a variety of cell types — paving the way for tissue regeneration.
Human induced pluripotent stem cells are adult stem cells capable of forming any type of cell. Their transformation is dictated by a series of genetic and protein signals. This gene expression process is triggered by specific molecules.
Scientists have previously discovered molecules capable of switching on genetic signals, but have yet to find molecules with the ability to turn off specific genetic signals in pluripotent stem cells.
Researchers at Kyoto University in Japan, however, have developed a new synthetic molecule, PIP-S2, that can alter gene signaling in hiPSCs. The molecule works by binding with a specific section of genetic coding.