>
Israeli Prime Minister, Netanyahu will meet with Trump on Wednesday and deliver instructions...
Elon Musk Offers To Cover Legal Bills Of Epstein Survivors Who Identify New Names
Red Alert Emergency Broadcast! Tune In NOW As Alex Jones Analyzes The Insane Revelations...
330 gallons of sulphuric acid was purchased for Epstein Island on the day the FBI opened...
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

(Natural News) Advancements in nanotechnology and synthetic biology could usher in new diagnostic technologies that may kill cancer cells or switch off aberrant genes. These are but a few implied uses of the recent experiments being made by researchers at Arizona State University who have demonstrated how RNA can be induced to carry out computations in a manner similar to computers. These manipulations capitalize on the relatively simple structure of RNA — compared to the more complex DNA — to produce a viable alternative building material in nanotechnology. The logic is incredibly clear-cut, but the more difficult aspects of ethics and morality clouds how these findings will be used in medicine.
To begin, let us first introduce this study, led by professor Alex Green of the ASU's Biodesign Institute. Green and co-authors Duo Ma and Jongmin Kim were able to create "designer RNA" which basically prompted (or perhaps more appropriately, programmed) the genetic cells to follow certain commands based on external stimuli. Labelled as "RNA switches," cells would be combined in specific, determined ways after evaluating and responding to multiple inputs — in the same way a computer or memory board would approach sequential operations like addition or subtraction. These logic gates followed an AND, OR, or NOT designation. For example, the AND gate would generate a certain response (typically the production of a protein) only when two RNA messages A AND B were present. Similarly, another output would be expected for the OR gate if only A OR B existed. The NOT gate would prevent either A or B from being inputted, depending on which RNA message was determined to not be needed.
This is basic programming in a nutshell. What makes nanotechnology frightening is that these processing elements are analyzed at multiple levels in mere seconds. Take note that while these three commands (AND, OR, and NOT) seem simple, the potential sequences begot from them are exponential. The fact that the circuits made using RNA parallels (and in some cases, exceeds) sophisticated computation implies a varied amount of potential uses, especially considering the limited resources of the cell.
Described more simply, researchers can now regulate specific protein production which can be applied to (theoretically) all and any RNA input. Furthermore, as these experiments are known to be considerably accurate and inexpensive, research into this field is predicted to just keep growing. This technology could be used to combat certain diseases, chiefly in areas where medical resources are limited. (Related: Programming RNA: The Future of Medicine – Carolyn Dean MD ND.)