>
Daniel McAdams - 'What I Learned from Ron Paul'
Can Trump Find a Way Out of the Box He Is in?
BREAKING: BlackRock continues dumping hundreds of millions of dollars worth of Bitcoin $BTC
Neuroscience just proved:Dolphins have more brain than humans in the areas that process...
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources.
Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn't be used for sieving common salts used in desalination technologies, which require even smaller sieves.
Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.