>
New Report Finds Miscarriage and Pregnancy Loss Among COVID Vaccinated Mothers
3 Uncomfortable Facts About Israel's War On Civilization You Won't Learn from Mainstream Med
Tesla Starting Integration of XAI Grok With Cars in Week or So
BREAKING: House PASSES President Trump's "Big Beautiful Bill," Sending the Legislation
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
An effective direct interfacing material is essential to communication between these devices and neural tissue, which includes nerves and the brain.
In recent years, a conjugated polymer known as PEDOT — widely used in applications such as energy conversion and storage, organic light-emitting diodes, electrochemical transistors, and sensing — has been investigated for its potential to serve as this interface.
In some cases, however, the low mechanical stability and relatively limited adhesion of conjugated polymers like PEDOT — short for poly (3,4-ethylene dioxythiophene) — on solid substrates can limit the lifetime and performance of these devices. Mechanical failure might also leave behind undesirable residue in the tissue.
A research team led by the University of Delaware's David Martin has reported the development of an electrografting approach to significantly enhance PEDOT adhesion on solid substrates.