>
The Road to War in Ukraine - The History of NATO and US Military Exercises With Ukraine - Part 1&2
Farming = Rebellion Against the Machine | Joel Salatin
DOGE Is Now in Charge of U.S. National Parks
@Benz_Pilled ANIMATION: The Reuters Kerfuffle
Cramming More Components Onto Integrated Circuits
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
How does the IsoMat achieve these goals? Essentially by moving heat from one place to another in a radically quick and efficient fashion.
At the heart of it, this is a new, multi-dimensional take on a simple heat pipe. These sealed metal tubes take advantage of phase changes in a trapped fluid to rapidly shift thermal energy. Heat them up at one end, and the fluid within will boil and evaporate, racing down the length of the tube as a gas.
As it reaches cooler metal, the gas condenses back into a liquid, releasing the heat, and the liquid flows back to the hot end so the process can repeat. Used in everything from laptops to spacecraft, heat pipes are an extremely effective way to transfer heat quickly, evenly and efficiently, with almost zero energy cost.
Flint's IsoMat is a flat aluminum sheet, that's effectively got row after row of tiny, sealed heat pipe cavities built into it. That's ... it. So if one part of the mat starts heating up, the internal fluid soaks up that energy, boils, and then rushes to fill the cavities stretching right across the mat, resulting in what the company claims is "near-instantaneous heat transfer across the entire surface," and a thermal transfer system some 5,000 times more efficient than copper or aluminum alone.
By carefully tuning the boiling and condensation points of the internal fluid, a whole bunch of different applications become apparent wherever there's a thermal gradient to cross. Flint highlights the following three.
A building with an IsoMat roof, or walls cladded in this material, could harness ambient temperature differences to naturally heat or cool the interior. And, presumably using thermoelectric generation, Flint says such a building could "potentially harvest enough energy from the air to power an entire home," or at least, to radically reduce your energy bill.
Commercial refrigerators, says the company, could be 30% more efficient if they used IsoMat shelves, which would chill things through direct contact, in addition to the regular cold air circulation gear. It's fair to say this could be a seriously big deal, given that according to theĀ International Institute of Refrigeration, cooling accounted for around 20% of the world's energy consumption in 2019 if you include things like air con.