>
Exclusive - Rep. Anna Paulina Luna Proposes to 'Strip' Deep State Surveillance Tools...
Real ID Is Not About Keeping You Safe
BREAKING: O'Keefe Media Group Releases Explosive Undercover Video...
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Not only can the condition be annoying for sufferers, it can also have a serious effect on mental health, often causing stress or depression. This is especially the case for patients suffering from tinnitus over months or years.
There's currently no cure for tinnitus. So finding a way to better manage or treat it could help many millions of people worldwide.
And one area of research that may help us better understand tinnitus is sleep. There are many reasons for this.
First, tinnitus is a phantom percept. This is when our brain activity makes us see, hear or smell things that aren't there. Most people only experience phantom perceptions when they're asleep.
But for people with tinnitus, they hear phantom sounds while they're awake.
The second reason is because tinnitus alters brain activity, with certain areas of the brain (such as those involved in hearing) potentially being more active than they should be. This may also explain how phantom percepts happen. When we sleep, activity in these same brain areas also changes.
Our recent research review has identified a couple of brain mechanisms that underlie both tinnitus and sleep. Better understanding these mechanisms – and the way the two are connected – could one day help us find ways of managing and treating tinnitus.
Sleep and tinnitus
When we fall asleep, our body experiences multiple stages of sleep. One of the most important stages of sleep is slow-wave sleep (also known as deep sleep), which is thought to be the most restful stage of sleep.
During slow-wave sleep, brain activity moves in distinctive "waves" through the different areas of the brain, activating large areas together (such as those involved with memory and processing sounds) before moving on to others.
It's thought that slow-wave sleep allows the brain's neurons (specialized brain cells which send and receive information) to recover from daily wear and tear, while also helping sleep make us feel rested. It's also thought to be important for our memory.
Not every area of the brain experiences the same amount of slow-wave activity. It's most pronounced in areas we use most while awake, such as those important for motor function and sight.