>
Tesla Robotaxi launch news hub and watch party
Crows are very intelligent birds. Look at what they can do.
"The World Now Sees Israel As The Genocidal Apartheid State That It Has Always Been"
GSK agrees to settle about 80,000 Zantac lawsuits for up to $2.2 bln
Jeff Bezos's Blue Origin Could Have a Commercial Space Station Running by 2030
Toyota Just Invested $500 Million in Electric Air-Taxi Maker Joby
Cheap, powerful, high-density EV battery cells set for mass production
World's first 3D-printed hotel rises in the Texas desert
Venus Aerospace Unveils Potential Mach 6 Hypersonic Engine and Will Power a Drone in 2025
OpenAI As We Knew It Is Dead, Now It's A Loose Cannon In The Hands Of A Megalomaniac Technocrat
Geothermal Energy Could Outperform Nuclear Power
I Learned How to Fly This Electric Aircraft in a Week--and I Didn't Need a License
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Israel develops method for hacking air-gapped computers - no computer is safe now
Type 1 diabetes (T1D) is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the islets of the pancreas, requiring type 1 diabetics to inject insulin daily to replace what's not being produced. T1D is commonly diagnosed during childhood or early adolescence and requires constant monitoring to reduce the risk of episodes of low blood sugar (hypoglycemia) and long-term complications.
Developing a 'functional cure' for T1D has been at the forefront of medical research, especially as science and technology have advanced. Many of these functional cures have involved the transplantation of pancreatic cells to replace the damaged and dead ones. In a similar vein, Canada-based regenerative medicine therapeutics company Sernova Corp has reported very promising results from early clinical trials using its novel Cell Pouch System technology in type 1 diabetics.
"This first-in-world data is potentially game-changing for Sernova and, more specifically, provides tangible hope for T1D patients that we are a significant step further in our mission of providing a functional cure for this terrible disease; as a type 1 diabetic myself, I could not be more determined to drive our program forward and ultimately onto the market," said Jonathan Rigby, president and CEO of Sernova.
Sernova's Cell Pouch System is a small, implantable medical device that's inserted under the skin against the abdominal muscle and contains stem-cell-derived 'therapeutic cells' – in the case of type 1 diabetics, cells that produce insulin. Because the device is porous, after implantation blood vessels infiltrate it and form a biocompatible tissue environment that ensures the long-term survival and function of the cells it houses.
About six weeks after implantation of the Cell Pouch, which allows time for patients to be stabilized on immune-suppressing therapy, islet cells are transplanted into the vascularized tissue chambers formed by the pouch. (Immunosuppressants reduce the risk that the patients' bodies will reject the transplanted cells.) Patients can receive 'top-up' islet transplants if they are still dependent on insulin six months after the last transplant. Those trial participants who retained their implants were followed up for at least three years.