>
DRINK 1 CUP Before Bed for a Smaller Waist
Nano-magnets may defeat bone cancer and help you heal
Dan Bongino Officially Leaves FBI After One-Year Tenure, Says Time at the Bureau Was...
WATCH: Maduro Speaks as He's Perp Walked Through DEA Headquarters in New York
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...

Medical professionals often refer to the 'Golden Hour' as the crucial period straight after a traumatic injury. While it's not strictly one hour, the general principle is that the faster medical intervention occurs, the better the patient's chances of survival.
That's obviously a big problem for emergencies that occur a long way from a hospital. But a new study from Harvard's Wyss Institute suggests a new way to extend that so-called Golden Hour, by placing a patient in "biostasis" to slow down their metabolism and prevent permanent organ damage.
The researchers used an algorithm called NeMoCad, which analyzes the structures of compounds to figure out which ones might have a desired effect – in this case, inducing torpor, a kind of hibernation-like state that some animals enter naturally. This process singled out a compound called donepezil, or DNP, which is currently FDA-approved as a treatment for Alzheimer's.
"Interestingly, clinical overdoses of DNP in patients suffering from Alzheimer's disease have been associated with drowsiness and a reduced heart rate – symptoms that are torpor-like," said María Plaza Oliver, first author of the study. "However, this is the first study, to our knowledge, that focuses on leveraging those effects as the main clinical response, and not as side effects."
The team tested out DNP's possible torpor-inducing effects in tadpoles. And sure enough, it reduced three biological factors that suggest torpor: oxygen consumption, heart rate and swimming motion.
Unfortunately, when injected as free particles, the drug accumulated in tissues across the tadpoles' bodies and caused some toxicity. To prevent that, the team encapsulated the DNP inside lipid nanoparticles, and found that the drug accumulated in the brain tissue, reducing toxicity while still inducing the torpor-like state.