>
MAHA's "Handpicked" Biosecurity Veteran
Remember back in 2022 when John Bolton "slipped" & admitted that he's helped plan Coup
What Are The Real Reasons Behind Washington's Latest Show Of Force Against Venezuela?
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
SpaceX launches Space Force's X-37B space plane on 8th mystery mission (video)
This New Bionic Knee Is Changing the Game for Lower Leg Amputees
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Venus Aerospace Hypersonic Engine Breakthroughs
Chinese Scientists Produce 'Impossible' Steel to Line Nuclear Fusion Reactors in Major Break
1,000 miles: EV range world record demolished ... by a pickup truck
Fermented Stevia Extract Kills Pancreatic Cancer Cells In Lab Tests
Scientists have discovered the biological mechanism of hearing loss caused by loud noise, which helped them find a way to prevent it.
When exposed to loud noises some people experience temporary or even permanent hearing loss or drastic changes in their perception of sound after the loud noises stop.
Researchers from the University of Pittsburgh in the US have now discovered that this noise-induced hearing loss stems from cellular damage in the inner ear that is associated with the excess of free-floating zinc, a mineral that is essential for proper cellular function and hearing.
Their experiments showed drugs that work as molecular sponges trapping excess zinc can help restore lost hearing, or if administered before an expected loud sound exposure, can protect from hearing loss.
"Noise-induced hearing loss can be debilitating. Some people start hearing sounds that aren't there, developing a condition called tinnitus, which severely affects a person's quality of life," said Professor Thanos Tzounopoulos from the Pittsburgh Hearing Research Center.
"Noise-induced hearing loss impairs millions of lives but, because the biology of hearing loss is not fully understood, preventing hearing loss has been an ongoing challenge."
To get their results, published in the journal Proceedings of the National Academy of Sciences, the team studied the inner ear cells of mice.
They found that hours after mice are exposed to loud noise, their inner ear zinc level spikes which, ultimately, leads to cellular damage and disrupts normal cell-to-cell communication.