>
Today's Technology: The Gateway to Psychotronic Weapons and the Reprogramming of Humanity
Netanyahu and Trump Host Libertarian Dinner!
American Doctor Organizations Are Such Shills for Big Pharma That They Cannot Be Trusted
SCOTUS: Trump's DOGE Mass Federal Layoffs Can Resume
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
It's opened the door to developing a drug to treat the condition for which existing painkillers do little.
Diabetes, chemotherapy drugs, multiple sclerosis, injuries and amputations have all been associated with neuropathic pain, usually caused by damage to nerves in various body tissues, including the skin, muscles and joints. Mechanical hypersensitivity – or mechanical allodynia – is a major symptom of neuropathic pain, where innocuous stimuli like light touch cause severe pain.
Many available pain medications aren't effective in reducing this often-debilitating type of chronic pain. However, researchers at the University of Texas at Austin (UT Austin), in collaboration with UT Dallas and the University of Miami, may have advanced the treatment of neuropathic pain by discovering a molecule that reduces mechanical hypersensitivity in mice.
"We found it to be an effective painkiller, and the effects were rather long-lived," said Stephen Martin, a co-corresponding author of the study. "When we tested it on different models, diabetic neuropathy and chemotherapy-induced neuropathy, for example, we found this compound has an incredible beneficial effect."
The compound is FEM-1689, which binds to the sigma 2 receptor (σ2R), which was identified in 2017 as transmembrane protein 97 (TMEM97). The researchers had previously found that several small molecules that bind selectively to σ2R/TMEM97 produce strong and long-lasting anti-neuropathic pain effects in mice. FEM-1689, one such small molecule, was found to have improved selectivity for σ2R/TMEM97.