>
LIVE ELECTION RESULTS: New York mayor, NJ & VA governor, Prop 50, Trump endorsements, latest vote
Sen. Markwayne Mullin Reveals Schumer Held Secret BACKROOM MEETING...
RIP NYC - Muslim Communist Zohran Mamdani Wins New York City Mayoral Race
Dramatic Footage Shows UPS Cargo Jet Crashing At Louisville Airport
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install

It's opened the door to developing a drug to treat the condition for which existing painkillers do little.
Diabetes, chemotherapy drugs, multiple sclerosis, injuries and amputations have all been associated with neuropathic pain, usually caused by damage to nerves in various body tissues, including the skin, muscles and joints. Mechanical hypersensitivity – or mechanical allodynia – is a major symptom of neuropathic pain, where innocuous stimuli like light touch cause severe pain.
Many available pain medications aren't effective in reducing this often-debilitating type of chronic pain. However, researchers at the University of Texas at Austin (UT Austin), in collaboration with UT Dallas and the University of Miami, may have advanced the treatment of neuropathic pain by discovering a molecule that reduces mechanical hypersensitivity in mice.
"We found it to be an effective painkiller, and the effects were rather long-lived," said Stephen Martin, a co-corresponding author of the study. "When we tested it on different models, diabetic neuropathy and chemotherapy-induced neuropathy, for example, we found this compound has an incredible beneficial effect."
The compound is FEM-1689, which binds to the sigma 2 receptor (σ2R), which was identified in 2017 as transmembrane protein 97 (TMEM97). The researchers had previously found that several small molecules that bind selectively to σ2R/TMEM97 produce strong and long-lasting anti-neuropathic pain effects in mice. FEM-1689, one such small molecule, was found to have improved selectivity for σ2R/TMEM97.