>
LIVE ELECTION RESULTS: New York mayor, NJ & VA governor, Prop 50, Trump endorsements, latest vote
Sen. Markwayne Mullin Reveals Schumer Held Secret BACKROOM MEETING...
RIP NYC - Muslim Communist Zohran Mamdani Wins New York City Mayoral Race
Dramatic Footage Shows UPS Cargo Jet Crashing At Louisville Airport
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install

The novel "bone bandage" has wide-ranging potential applications for bone regeneration and regenerative medicine generally.
Piezoelectric materials generate an electric charge in response to applied mechanical stress. Bone is a piezoelectric material. Because it possesses an electrical microenvironment, electrical signals play an important role in the bone repair process, which can effectively promote bone regeneration. However, bone regeneration is a complex process that relies on mechanical, electrical, and biological components.
Current strategies for bone regeneration, such as grafts or scaffolds that release growth factors, have limitations, such as complications at the donor site, limited availability, and high cost. Now, researchers from the Korea Advanced Institute of Science and Technology (KAIST) have developed a pioneering approach to bone regeneration that combines piezoelectricity and a mineral that occurs naturally in bone.
Hydroxyapatite (HAp), a mineral in bones and teeth, plays a role in bone's structural strength and regeneration. It's commonly added to toothpaste to remineralize tooth enamel and fortify teeth. Studies have found that HAp enhances osteogenesis (bone formation) and provides a scaffold for new bone growth. It also has piezoelectric properties and a rough surface, making it an ideal candidate for creating scaffolds on which to grow bone.
So, the researchers fabricated a freestanding biomimetic scaffold, integrating HAp within the piezoelectric framework of polyvinylidene fluoride-co-trifluoro ethylene (P(VDF-TrFE)), a polymer film. The independent scaffold, which generates electrical signals when pressure is applied, sets this approach apart from previous research combining HAp and P(VDF-TrFE), which was limited to coatings on metallic prosthetics. The researchers' novel approach, they say, provides a versatile platform for bone regeneration beyond surface-bound applications.