>
Government shutdown triggers travel nightmare as controller shortages force ground stops...
How a natural PEPTIDE helped me REGENERATE injured tissue
Asteroid Threat Detection and Planetary Defense Can Be Complete and Ready by 2035
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Scientists at Rice University have now shown that substituting graphene can not only save sand, but makes concrete lighter, stronger and tougher.
Despite being a sheet of carbon atoms just one atom thick, graphene has a reputation for being incredibly strong. As such, it's no surprise that this 'wonder material' has been mixed into concrete before, usually to make it stronger and more durable. But that usually involves just adding graphene to the recipe – for the new study, the Rice team wanted to replace sand completely.
Concrete is made of three main ingredients: water, an aggregate like sand, and cement to bind it all together. Sand is the largest component by volume, and given modern humanity's insatiable appetite for concrete, sand mining is increasing. Not only is this process destructive, but it risks running out of sources.
The research comes from the lab of Rice University chemist James Tour, whose team has been making graphene for years using a technique they developed called flash Joule heating. Essentially, a carbon-rich base material is quickly superheated with a zap of electricity, converting it into graphene flakes. In this case, the base material was metallurgical coke, a fuel source created from coal.
"Initial experiments where metallurgical coke was converted into graphene resulted in a material that appeared similar in size to sand," said Paul Advincula, lead author of the study. "We decided to explore the use of metallurgical coke-derived graphene as a total replacement for sand in concrete, and our findings show that it would work really well."