>
Victoria's Secret Fashion Show 2025: Brand back to 'super sexy'...
Scientists reveal what really happens after someone has a near-death experience
Florida's housing market is flashing a warning for the rest of the US
WATCH LIVE: President Trump and FBI Director Kash Patel to Hold Press Conference - 3 PM ET
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
As its name suggests, the TTSS combines two tower-style technologies into a single design: a solar updraft tower and a cooling downdraft tower. These are integrated into a single tower, with the updraft tower coming up through the middle.
A solar updraft system works by heating up the air at ground level, then using the fact that hot air rises to funnel that air up a tall tower with turbines in it. The air is heated under a large roof covering a vast collection area, made from a greenhouse-type material designed to trap as much heat as possible.
These have been built at experimental scale, but not yet at a commercial scale, since they're typically very large, tall structures to ensure a good temperature differential. Thus, capital costs are high and they're viewed as risky.
A cooling downdraft tower, on the other hand, forces air downwards to turn another turbine. In this design, that's accomplished by spraying a fine mist of water into the ambient air at the top of the tower, making it both cooler and heavier and sending it downward.
The TTSS design places an updraft tower in the middle, and surrounds it with 10 downdraft towers running around the outside, such that it can operate in both updraft and downdraft modes simultaneously.
The research team, from Jordan's Al Hussein Technical University and Qatar University, modeled a TTSS tower some 200 m (656 ft) tall and 13.6 m (45 ft) in diameter, with a 250-m (820-ft) diameter collector underneath it. The inner cooling tower's diameter was 10 m (33 ft), leaving a 1.8-m (5.9-ft) gap all the way around. This gap was partitioned into 10 separate downdraft towers, with water misting systems at the top and turbines at the bottom. The location chosen was near Riyadh City – hot, dry desert areas are ideal for these designs.