>
Third Time's The Charm: SpaceX Starship Megarocket Blasts Off From Starbase
First Ever: Technocracy Roundtable Streaming Today
Comcast Network Horror: Summer Ratings Crash 49%, Advertisers In Major Bind
BREAKING: DNI Tulsi Gabbard Uncovers "Burn Bags" of Documents Tied to 2020 Election...
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
SpaceX launches Space Force's X-37B space plane on 8th mystery mission (video)
This New Bionic Knee Is Changing the Game for Lower Leg Amputees
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
The most commonly known form of magnetism – the kind that sticks stuff to your fridge – is what's called ferromagnetism, which arises when the spins of all the electrons in a material point in the same direction. But there are other forms such as paramagnetism, a weaker version that occurs when the electron spins point in random directions.
In the new study, the ETH scientists discovered a strange new form of magnetism. The researchers were exploring the magnetic properties of moiré materials, experimental materials made by stacking two-dimensional sheets of molybdenum diselenide and tungsten disulfide. These materials have a lattice structure that can contain electrons.
To find out what type of magnetism these moiré materials possessed, the team first "poured" electrons into them by applying an electrical current and steadily increasing the voltage. Then, to measure its magnetism, they shone a laser at the material and measured how strongly that light was reflected for different polarizations, which can reveal whether the electron spins point in the same direction (indicating ferromagnetism) or random directions (for paramagnetism).
Initially the material exhibited paramagnetism, but as the team added more electrons to the lattice it showed a sudden and unexpected shift, becoming ferromagnetic. Intriguingly, this shift occurred exactly when the lattice filled up past one electron per lattice site, which ruled out the exchange interaction – the usual mechanism that drives ferromagnetism.
"That was striking evidence for a new type of magnetism that cannot be explained by the exchange interaction," said Ataç Imamo?lu, lead author of the study.