>
Trump DEPLOYS Election Monitors To Blue States, Democrats SCREAM RIGGED ELECTION
Tucker Carlson: The Nick Fuentes Interview
President Trump Needs to Turn Attention to Our Problems
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

In the future, wires might cross underneath oceans to effortlessly deliver electricity from one continent to another. Those cables would carry currents from giant wind turbines or power the magnets of levitating high-speed trains.
All these technologies rely on a long-sought wonder of the physics world: superconductivity, a heightened physical property that lets metal carry an electric current without losing any juice.
But superconductivity has only functioned at freezing temperatures that are far too cold for most devices. To make it more useful, scientists have to recreate the same conditions at regular temperatures. And even though physicists have known about superconductivity since 1911, a room-temperature superconductor still evades them, like a mirage in the desert.