>
Exclusive - Rep. Anna Paulina Luna Proposes to 'Strip' Deep State Surveillance Tools...
Real ID Is Not About Keeping You Safe
BREAKING: O'Keefe Media Group Releases Explosive Undercover Video...
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
In the future, wires might cross underneath oceans to effortlessly deliver electricity from one continent to another. Those cables would carry currents from giant wind turbines or power the magnets of levitating high-speed trains.
All these technologies rely on a long-sought wonder of the physics world: superconductivity, a heightened physical property that lets metal carry an electric current without losing any juice.
But superconductivity has only functioned at freezing temperatures that are far too cold for most devices. To make it more useful, scientists have to recreate the same conditions at regular temperatures. And even though physicists have known about superconductivity since 1911, a room-temperature superconductor still evades them, like a mirage in the desert.