>
The Hidden Secrets of Natural Milk
Diddy Trial Drama: Star Witness Vanishes Ahead Of Explosive Testimony
PTSD treatment that excites a nerve in your neck wipes symptoms completely
High-tech lactation pad measures medication in mothers' milk
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
While trying to figure out if it were possible to extract electrons from a known process in the early stages of photosynthesis, the scientists instead found an entirely-new electron transfer pathway, which for those who remember their biology 101, is the metabolic method that extracts the most energy from food.
The study's authors believe this new understanding of photosynthesis could create new and more efficient ways of harnessing the process's power to generate biofuels.
The research team, comprised of scientists from across the globe, first set out to understand why a ring-shaped molecule called a 'quinone' is able to steal electrons from the photosynthetic process
Quinones, which are common in nature, are able to easily accept and give away electrons.