>
Trump, Treason, and the New York Times
Democrat idiocy at work in San Francisco
BREAKING THROUGH Tesla AI in 2026
Who Was The Biggest Antisemite In 2025?
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...

GPT-4 can output 25000 words. GPT-4 can write a higher quality novel while GPT3.5 could only output a very short story.
GPT-4 can score 1410 on the SAT tests vs 1260 for GPT 3.5.
GPT-4 can score 161 on the LSAT vs 149 for GPT 3.5.
GPT-4 can score 99 percentil for GRE (high school equivalent) verbal test vs 63 percentile for GPT3.5.
GPT-4 is a Transformer based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
A large focus of the GPT-4 project was building a deep learning stack that scales predictably. The primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive model-specific tuning. To address this, we developed infrastructure and optimization methods that have very predictable behavior across multiple scales. These improvements allowed us to reliably predict some aspects of the performance of GPT-4 from smaller models trained using 1, 000× –10, 000× less compute.