>
Did DOJ Prosecutors Violate Trump's Executive Order By Selling Forfeited Samourai Wallet Bitcoin
UBS: "Copper Is The Commodity Everyone Wants To Own"
Silver is not "running hot" by accident.
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging
See inside the tech-topia cities billionaires are betting big on developing...
Storage doesn't get much cheaper than this
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies

Using regolith simulants, their reactor produces iron, silicon, and aluminum through molten regolith electrolysis, in which an electrical current separates those elements from the oxygen to which they are bound. Oxygen for propulsion and life support is a byproduct.
Above – Molten regolith electrolysis extracts iron, then silicon, and finally aluminum by passing a current through the molten regolith. The rising oxygen bubbles in one of our reactors show metals and metalloids being separated from oxygen. Our reactor geometry, metal extraction approach, and materials selection will enable sustained lunar operations.
This process purifies silicon to more than 99.999%. This level of purity is required to make efficient solar cells. While typical silicon purification methods on Earth use large amounts of toxic and explosive chemicals, their process uses just sunlight and the silicon from their reactor.
The harsh lunar environment means lunar solar cells need cover glass. They would only last for days without glass. This technique uses only molten regolith electrolysis byproducts to make cover glass that enables lunar lifetimes exceeding a decade.