>
Bitcoin on a Prepaid Card? Moon Inc. Raises $8.8M to Make It Happen in Asia
The Rise of the Thielverse and the Construction of the Surveillance State (w/ Whitney Webb)
Cameco, Nuclear Names Soar After US Government Invests $80BN In Nuclear Reactors
Corporate Layoffs Spike As Companies Prepare For Tariff Shocks
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Combustion engines are tried and true, and however angry they might look and sound in a top-fuel dragster or space rocket booster, the combustion process of oxidizing fuel in air is relatively slow and predictable. Detonation, on the other hand, is as chaotic and destructive as it sounds. It's how most bombs work; you take an explosive fuel and hit it with a jolt of energy, and the chemical bonds holding each molecule together break apart, releasing wild amounts of energy in a shockwave that expands at supersonic speed.
NASA, along with many other groups, wants to harness these explosions for a couple of key reasons. Firstly, detonation engines have a considerably higher theoretical level of efficiency than combustion engines, perhaps as much as 25%; they should be able to produce more thrust using less fuel and a smaller rocket. In the engineering and economics of space flight, that means cheaper launches, more billable payload, and greater distances.