>
Biden's 'Day Of Judgement' Awaits:
They Went Woke and Now They're Back Tracking
"One Lie After The Next": CNN Ratings Hit 9-Year Lows After Reputational Suicide
Russian Firm Offers $71,000 Cash Bounty For Destruction Or Capture Of Western Tanks
How Bamboo Towers in Africa Produce Free Water
CHEAP AND EASY DIY CHICKEN COOP!
NVIDIA released a new Eye Contact feature that uses AI to make you look into the camera.
Plasma Thrusters Ran at 500% Beyond Old Power Limits
Nikola Highlights its Integrated Hydrogen Solution, Introduces New Hydrogen Energy Brand "HYLA*
Tesla Will Have Abundant 4680 Batteries in a Few Years
CIA FUNDED COMPANY TO RESURRECT EXTINCT ANIMALS UNDER THE GUISE OF CLIMATE CHANGE
MightyFly's new autonomous cargo drone carries 100 lb for 600 miles
What search engine best at "Freedom-Respecting"?
A breakthrough system can see through walls by using Wi-Fi routers
The cerebral cortex has been thought of as the part of the human brain in which conscious thought is processed. It would be expected that the cortex would be less active when a patient is under general anesthesia. A new study reports, however, that under general anesthesia, just some of the cortical cells record less activity. Other cells increase activity and synchronize.
These findings may lead to improvements in anesthetic drugs and better surgical outcomes.
The work of Professor Botond Roska and his group of researchers at the University of Basel, Switzerland, reveals how different cell types in the cerebral cortex change in activity during general anesthesia. This new information increases understanding about induction of unconsciousness via anesthetic drugs.
It has been known for the last 100 years that some cells in the cortex are active, alternating between periods of high and low activity, during general anesthesia. Attaching EEG electrodes to the scalp has been one of the few means available to detect cortical activity, but it doesn't allow identification of the cells which are active.
The cortex is composed of different cell types; each type serves different functions. Different general anesthetics act on different receptors, located on different types of neurons throughout the brain. All general anesthetics, however, ultimately have the same effect – loss of consciousness.
"We were interested in finding if there is a common neuronal mechanism across different anesthetics," says Dr. Martin Munz, co-leader of the study, in a statement.
To address the question, researchers used genetic tools, and mice with variable characteristics bred just for the study, to label individual cortical cell types. They found that in contrast to what had previously been suspected, only one specific cell type within the cortex, labeled "layer 5 cortical pyramidal neurons," showed an increase in activity when the animals were exposed to different anesthetics.