>
Harbor Freight Coverpro 12x20 made into a Metal Building part 2
Brian Cole BUSTED, Halle Berry NUKES Newsom + Candace REJECTS TPUSA Challenge...
I spent my Thanksgiving in the emergency rom... Medical emergencies can pop up at any time.
The "Golden Age" of Job Layoffs?
Build a Greenhouse HEATER that Lasts 10-15 DAYS!
Look at the genius idea he came up with using this tank that nobody wanted
Latest Comet 3I Atlas Anomolies Like the Impossible 600,000 Mile Long Sunward Tail
Tesla Just Opened Its Biggest Supercharger Station Ever--And It's Powered By Solar And Batteries
Your body already knows how to regrow limbs. We just haven't figured out how to turn it on yet.
We've wiretapped the gut-brain hotline to decode signals driving disease
3D-printable concrete alternative hardens in three days, not four weeks
Could satellite-beaming planes and airships make SpaceX's Starlink obsolete?

In a basic sense, speakers work by vibrating a membrane, which manipulates the air above it to produce sound waves. In speakers commonly found in audio systems or headphones, that's done using electrical currents and magnetic fields.
But in recent years scientists have developed ways to achieve similar results in much slimmer devices. Thin film speakers work using piezoelectric materials, which vibrate in response to the application of a voltage. These have been used in phones and TVs, and even experimentally to create speakers out of things as unusual as flags.
The problem is, these thin speakers need to either be free-standing or have some separation from another surface – mounting them reduces their ability to vibrate and produce sound. But in the new study, the MIT researchers redesigned thin speakers so they could be mounted on various surfaces.
Instead of having the whole surface of the membrane vibrate, the team formed the material into a grid of raised domes, which vibrate independently of each other. This is done by sandwiching a thin layer of a piezoelectric material, just 8 micrometers thick, between two layers of PET plastic. One PET layer has a grid of tiny holes, through which the piezoelectric material protrudes. The lower PET layer protects the membrane and allows the speaker to be mounted to a surface.
"This is a very simple, straightforward process," said Jinchi Han, lead author of the study. "It would allow us to produce these loudspeakers in a high-throughput fashion if we integrate it with a roll-to-roll process in the future. That means it could be fabricated in large amounts, like wallpaper to cover walls, cars, or aircraft interiors."