>
The Hidden Secrets of Natural Milk
Diddy Trial Drama: Star Witness Vanishes Ahead Of Explosive Testimony
PTSD treatment that excites a nerve in your neck wipes symptoms completely
High-tech lactation pad measures medication in mothers' milk
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
In a basic sense, speakers work by vibrating a membrane, which manipulates the air above it to produce sound waves. In speakers commonly found in audio systems or headphones, that's done using electrical currents and magnetic fields.
But in recent years scientists have developed ways to achieve similar results in much slimmer devices. Thin film speakers work using piezoelectric materials, which vibrate in response to the application of a voltage. These have been used in phones and TVs, and even experimentally to create speakers out of things as unusual as flags.
The problem is, these thin speakers need to either be free-standing or have some separation from another surface – mounting them reduces their ability to vibrate and produce sound. But in the new study, the MIT researchers redesigned thin speakers so they could be mounted on various surfaces.
Instead of having the whole surface of the membrane vibrate, the team formed the material into a grid of raised domes, which vibrate independently of each other. This is done by sandwiching a thin layer of a piezoelectric material, just 8 micrometers thick, between two layers of PET plastic. One PET layer has a grid of tiny holes, through which the piezoelectric material protrudes. The lower PET layer protects the membrane and allows the speaker to be mounted to a surface.
"This is a very simple, straightforward process," said Jinchi Han, lead author of the study. "It would allow us to produce these loudspeakers in a high-throughput fashion if we integrate it with a roll-to-roll process in the future. That means it could be fabricated in large amounts, like wallpaper to cover walls, cars, or aircraft interiors."