>
Cabless autonomous electric truck approved for US public roads
Top 10 Design Flaws in the Human Body
Roger Penrose On Why Consciousness Does Not Compute
Have You Changed Phones Yet?, + Q&A
Breakthrough Zero-Carbon Fertilizer Set to Take Root Across the World as 'Biochar'
Artificial Photosynthesis Can Produce More Food in the Dark Than With Sunshine
Researchers run a gas turbine on pure hydrogen in world first
Injectable hydrogel treats back pain from damaged discs in human trials
Going under anesthesia? Scientists reveal what happens inside your unconscious brain
Delivery van becomes solar-powered RV to cross the Americas
Toyota and Woven Planet have developed a portable hydrogen cartridge
Massive LNG tanker sails itself across the Pacific in shipping world first
Mayman Aerospace debuts flight-ready Speeder flying motorbike prototype
About 750 million people in the world do not have access to electricity at night. Solar cells provide power during the day, but saving energy for later use requires substantial battery storage.
Researchers from Stanford University constructed a photovoltaic cell that harvests energy from the environment during the day and night, avoiding the need for batteries altogether. The device makes use of the heat leaking from Earth back into space—energy that is on the same order of magnitude as incoming solar radiation.
"You want the thermoelectric to have very good contact with both the cold side, which is the solar cell, and the hot side, which is the ambient environment," said author Sid Assawaworrarit. "If you don't have that, you're not going to get much power out of it."
At night, solar cells radiate and lose heat to the sky, reaching temperatures a few degrees below the ambient air. The device under development uses a thermoelectric module to generate voltage and current from the temperature gradient between the cell and the air. This process depends on the thermal design of the system, which includes a hot side and a cold side.