>
Cabless autonomous electric truck approved for US public roads
Top 10 Design Flaws in the Human Body
Roger Penrose On Why Consciousness Does Not Compute
Have You Changed Phones Yet?, + Q&A
Breakthrough Zero-Carbon Fertilizer Set to Take Root Across the World as 'Biochar'
Artificial Photosynthesis Can Produce More Food in the Dark Than With Sunshine
Researchers run a gas turbine on pure hydrogen in world first
Injectable hydrogel treats back pain from damaged discs in human trials
Going under anesthesia? Scientists reveal what happens inside your unconscious brain
Delivery van becomes solar-powered RV to cross the Americas
Toyota and Woven Planet have developed a portable hydrogen cartridge
Massive LNG tanker sails itself across the Pacific in shipping world first
Mayman Aerospace debuts flight-ready Speeder flying motorbike prototype
Yet we know very little about how the complex reaction occurs, limiting our ability to use the double benefit to our advantage.
By studying the enzyme the bacteria use to catalyze the reaction, a team at Northwestern University now has discovered key structures that may drive the process.
Their findings ultimately could lead to the development of human-made biological catalysts that convert methane gas into methanol.
"Methane has a very strong bond, so it's pretty remarkable there's an enzyme that can do this," said Northwestern's Amy Rosenzweig, senior author of the paper. "If we don't understand exactly how the enzyme performs this difficult chemistry, we're not going to be able to engineer and optimize it for biotechnological applications."
The enzyme, called particulate methane monooxygenase (pMMO), is a particularly difficult protein to study because it's embedded in the cell membrane of the bacteria.