>
THE CRYPTO VIGILANTE SUMMIT:
WHAT MATTERS MOST IN CRYPTO
Retarded Or Evil? Leftist Arguments Justifying The Murder Of Charlie Kirk
Charlie Kirk once questioned if Ukraine would try to kill him (VIDEO)
KOL060 | Guest on Ernest Hancock's Declare Your Independence radio show: intellectual property a
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Unlocking these discoveries will enable us to better understand Earth and the formation and evolution of our solar system and countless others. However, due to the high cost and production scaling difficulty, outer solar system exploration has been extremely limited: celestial bodies beyond Saturn have been visited only once in more than 60 years of space exploration. Furthermore, long travel time scales up mission complexity by adding to operations cost, the need for expertise retention over the mission lifetime, and the chance of hardware failures in the harsh space environment.
Solar sails may offer a drastically new approach for deep space exploration paving the way to low cost and fast-transit missions. Recent studies, including NIAC studies, indicate that solar sails can reach over 10 AU/year which would allow us to reach Uranus in less than 2 years and Neptune in less than 3 years, unprecedented with today's propulsion technology. Nevertheless, owing to very stringent mass requirement, solar sails have limited capability for science payloads when compared to flagship class mission spacecraft.
Here, researchers propose a ScienceCraft – a game changing mission concept that integrates a science instrument and spacecraft into one monolithic structure. By printing a quantum dot-based spectrometer, developed by the PI Sultana (ROSES), directly on the solar sail material, developed by CoI Davoyan, they would create a breakthrough spacecraft architecture allowing an unprecedented parallelism and throughput of data collection, and rapid travel across the solar system. Unlike conventional solar sails that serve only to propel small cubesats, ScienceCraft puts its vast area at use for spectroscopy, pushing the boundary of scientific exploration of outer solar system. ScienceCraft offers an attractive low resource platform that can enable science missions at a significantly lower cost and provide a large number of launch opportunities as a secondary payload. Several ScienceCraft working synchronously would be capable of reaching Neptune-Triton system in just a few years and enable acquisition of large amounts of data.